
Abstract

Aeromonas hydrophila, a notorious pathogen in
aquaculture, poses significant threats to fish health
and industry sustainability, necessitating detailed
investigations into its identity, virulence mecha-
nisms, and antibiotic resistance. This study evalu-
ated the identity, virulence properties, and antibiotic
susceptibility of four A. hydrophila strains
(COFCAU_AH1, COFCAU_AH2, COFCAU_AH3,
COFCAU_AH4) isolated from carp culture pond
water in Tripura, India. The strains were confirmed
as A. hydrophila through a combination of morpho-
logical, physiological, biochemical analyses, and 16S
rRNA gene sequencing. All strains were susceptible
to several antibiotics but some showed resistance to
kanamycin, tobramycin, and polymyxin B. Viru-
lence genes such as hlyA, alt, ast, ela, and ascC were
found in COFCAU_AH3, and COFCAU_AH4,
while the lipase gene (lip) was present in all four
strains. The in vivo pathogenicity test determined the
LD

50
 for COFCAU_AH1, COFCAU_AH3 and

COFCAU_AH4 as 109.5, 104.4, and 104.5 cells/fish,
respectively, with no mortality in fish exposed to
COFCAU_AH2. Infected fish displayed clinical
signs like exophthalmia, scale erosion, fin and tail
rot, hemorrhages, and abdominal dropsy. These
findings highlight the risk of virulent A. hydrophila
strains in aquaculture, emphasizing the need for
effective monitoring and management.
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Introduction

Fish diseases have become a primary constraint
hindering the development and sustainability of
aquaculture practices worldwide (Smith, 2006).
These disease issues are driven by various global
factors, including the rise in commerce and market
globalization, the intensification of fish farming
practices to boost productivity, and the introduction
of new species for aquaculture development
(Bondad-Reantaso et al., 2005). Various infectious
agents have been reported to cause significant
losses, among which bacterial pathogens are more
prevalent, causing high mortalities in various fishes
at different stages of their growth (Swain, Nayak,
Sahu, Mohapatra, & Meher, 2002; Yesmin et al.,
2004).

Aeromonas species are Gram-negative, rod-shaped,
opportunistic, and zoonotically important bacterial
fish pathogens, widespread worldwide, predomi-
nantly found in freshwater habitats such as lakes,
rivers, and domestic sewage. According to several
studies, members of the genus Aeromonas are among
the most significant pathogens that have been linked
to the pathogenesis of several systemic and localized
diseases in humans, as well as fish and other aquatic
animals (Janda & Abbott, 2010; Beaz-Hidalgo &
Figueras, 2013; Kumar et al., 2022; Devi, Khan,
Choudhury, Pradhan, & Kamilya, 2024). Among
Aeromonas spp., Aeromonas hydrophila is a major
etiologic agent in infections in fresh- and warm-
water fish farming, causing significant economic



problems worldwide (Semwal, Kumar, & Kumar,
2023). A. hydrophila cause ‘Motile Aeromonad
Septicaemia’ in fish, which is characterized by
swollen abdomen, red mouth, and haemorrhage in
the external surface and surrounding the anus
(Alain, 2009). Additionally, it has been reported to
induce liver and kidney necrosis, tissue degrada-
tion, and haemorrhages throughout the body
(Johnson, 1993).

A. hydrophila possess multiple virulence genes, along
with other virulence factors and mechanisms, that
aid in their pathogenicity and disease development.
Several researchers have described various virulence
factors in A. hydrophila, including aerolysin,
haemolysin, and enterotoxins (Yogananth, Bhakyaraj,
Chanthuru, Anbalagan, & Nila,  2009; Chakraborty,
Huhle, Bergbauer, & Goebel, 1986), exoenzymes
such as amylase, protease, hydrolase, elastase, and
lipase (Leung & Stevenson, 1988; Pemberton, Kidd,
& Schmidt, 1997; Semwal et al., 2023), type III
secretion system (Vilches, Jimenez, Tomás, & Me-
rino, 2009), S-layer (Dooley & Trust, 1988), antigen-
O, and the presence of capsules (Zhang, Arakawa,
& Leung, 2002). These factors are reported to act in
a multifunctional and multifactorial manner (Citterio
& Biavasco, 2015).

Environmental isolates of A. hydrophila, carrying
various virulence factors, pose a significant threat to
aquaculture. Controlling the spread of these envi-
ronmental isolates is crucial for maintaining the
sustainability and profitability of aquaculture, ne-
cessitating stringent biosecurity measures and effec-
tive management strategies to mitigate the risks
associated with A. hydrophila. Understanding the
pathogenicity and virulence pathways of environ-
mental isolates of A. hydrophila will be essential in
controlling these diseases and limiting their spread.
In this study, four A. hydrophila strains were
recovered from water samples of different
polyculture ponds in Tripura, India. These strains
were identified using physiological, biochemical,
and molecular methods, and were screened for their
virulent potential through phenotypic and geno-
typic analysis. The in vivo pathogenicity and
antibiotic susceptibility profile are also reported.

Materials and Methods

Bacteria were isolated from water samples collected
from fish polyculture ponds in Tripura, India (Fig.
1), where many fish exhibited petechial hemor-
rhages, following the method described by Pradhan

et al. (2023). Sterile glass bottles were used to collect
500 mL of water from a depth of approximately 20
cm below the water surface. The samples were then
preserved in ice bags during transport to the
laboratory. Bacteriological analyses were conducted
within 6h of sample collection. A culture-dependent
approach was employed to isolate bacteria, utilizing
the spread plating technique. Diluted water samples
(10-1 to 10-3) in physiological saline (0.85% NaCl)
were inoculated onto an Aeromonas isolation me-
dium (HiMedia, India) and incubated at 30°C for 24-
48h (Devi et al., 2024). Presumptive Aeromonas spp.
were identified and preserved at -80°C in the
glycerol stock.

The identification of the isolates involved a compre-
hensive assessment encompassing morphological,
physiological, and biochemical parameters, follow-
ing the guidelines outlined by MacFaddin (1980)
and the work of Austin and Austin (2007). Further-
more, the distinctive characteristics outlined in
Bergey’s Manual of Systematic Bacteriology (Martin-
Carnahan & Joseph, 2005) were used as reference
points for identification.

A. hydrophila genomic DNA extracted employing the
CTAB method (Wilson, 2001) was utilized in the
PCR amplification of 16S rRNA gene with the
universal primers 27F (5’
AGAGTTTGATCCTGGCTCAG 3’) and 1492R (5’
GGTTACCTTGTTACGACTT 3’) (Weisburg, Barns,
Pelletier, & Lane, 1991). The amplification reaction
was performed using a thermal cycler (Applied
Biosystems, USA). The final reaction mixture (25 µL)
contained 1.0 µL of bacterial genomic DNA, 1.0 unit
of Taq DNA polymerase, 5 µL of 10X PCR

Fig. 1. Location of sampling
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amplification buffer (100 mM Tris-HCl, 15 mM
MgCl

2
, 500 mM KCl, pH 8.3), 200 µM

deoxynucleotide triphosphate (dNTP), and 10 pmoles
of each primer. The PCR amplification process
included an initial denaturation at 95°C for 10 min,
followed by 35 cycles of denaturation at 95°C for 30
sec, annealing at 55°C for 30 sec, and extension at
72°C for 2 min. Subsequently, a final extension step
at 72°C for 7 min was incorporated. The PCR
products were then analyzed on a 2% agarose gel
stained with ethidium bromide and visualized using
a UV transilluminator (Bio-rad, USA). The PCR
products were purified (Thermo Fisher Scientific,
USA) and sequenced (Bioserve Biotechnologies,
India). Sequences were analyzed with Chromas
(Technelysium, Australia) and matched to GenBank
via BLAST. A phylogenetic tree was constructed
with MEGA 11 using the neighbor-joining method
from the 16S rRNA sequence.

The antibiotic susceptibility of isolates was evalu-
ated using the disc diffusion method on Mueller-
Hinton agar plates (Bauer, Kirby, Sherris, & Turck,
1966). Overnight cultures were swabbed onto the
plates, and antibiotic-impregnated discs (HiMedia)
were placed aseptically, followed by incubation at
30°C for 24h.The results were interpreted according
to the Clinical and Laboratory Standard Institute
(CLSI) guidelines (CLSI, 2016) for 13 antibiotics,
including gentamicin (10 µg), kanamycin (300 µg),
azithromycin (15 µg), polymyxin B (300 µg),
tetracycline (30 µg), cephalexin (30 µg), amoxyclav
(30 µg), erythromycin (15 µg), vancomycin (30 µg),
and oxacillin (10 µg).

The isolates were evaluated for their potential to
produce extracellular substances capable of causing
pathological effects in the host. The ability to
produce haemolysins was assessed by examining

Table 1. Primers for PCR analysis

Sl. Gene Encoded Primer Sequence (5’-3’) Product
No. name genes size References

1. aerA Aerolysin F- CCCGCCGATCTGCAACCGGGR- 489 bp Ørmen and
CTGGTCTGGATAGACGGGCTCTGCC Østensvik

(2001)

2. act Cytotoxic F- AGAAGGTGACCACCAAGAACAR-
enterotoxin AACTGACATCGGCCTTGAACTC 232 bp Kingombe et

al. (1999)
3. ast Cytotonic F- TCTCCATGCTTCCCTTCCACTR- 331 bp Kingombe et

enterotoxins GTGTAGGGATTGAAGAAGCCG al. (1999)

4. alt Cytotonic F- TGACCCAGTCCTGGCACGGCR – 442 bp Kingombe et
enterotoxins GGTGATCGATCACCACCAGC al. (1999)

5. hlyA Hemolysin F- GGCCGGTGGCCCGAAGATACGGGR – 597 bp Heuzenroeder,
GGCGGCGCCGGACGAGACGGG Wong, and

Flower (1999)

6. lip Lipase F- ATCTTCTCCGACTGGTTCGGR- 382 bp Sen and Rodgers
CCGTGCCAGGACTGGGTCTT (2004)

7. exsA T3SS F -TACCACAGAGAAGGGCGATA 435 bp Lim and Hong
transcriptional R- GCGAGCAGAAACAGCAACT (2020)
regulator

8. ascV Outer F-ATGGACGGCGCCATGAAGTT 710 bp Chacón, Soler,
membrane ring R- TATTCGCCTTCACCCATCCC Groisman,
of T3SS Guarro, and

Figueras (2004)

9. ascC Inner membrane F -GCATTGGAGCAACAGTCCCA 476 bp Lim and Hong
ring of T3SS R- CCTTCAATCCCCTTGCGAT (2020)

10. ela Elastase F ACACGGTCAAGGAGATCAAC 513 bp Sen and Rodgers
R CGCTGGTGTTGGCCAGCAGG (2004)
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the isolates on blood agar (HiMedia) containing 5%
fish blood (Pradhan et al., 2023). Amylase activity
was evaluated on starch ampicillin agar (HiMedia),
where clear zones around the colonies indicated
starch hydrolysis, as confirmed by flooding the
plates with Lugol’s iodine solution (Shameena,
Kumar, Kumar, Kumar, & Rathore, 2020). The ability
of the isolates to hydrolyze lipids by producing
lipase enzymes was tested on tributyrin agar
(HiMedia) containing tributyrin as the lipid sub-
strate (Harley & Prescott, 2002). Gelatinase activity
was identified by clear zones around the colonies,
upon flooding the gelatin agar plates with a
mercuric chloride solution (dela Cruz & Torres,
2012). Caseinase and DNase activity was carried out
on skim milk agar plates containing casein and
DNase agar plates containing DNA and toluidine
blue (Huys, Kesters, Coopman, Janssen, & Kersters,
1996), respectively.

Putative virulence genes, including aerolysin (aerA),
cytotoxic (act), cytotonic enterotoxin (ast and alt),
lipase (lip), hemolysin (hlyA), elastase (ela), tran-
scriptional regulator (exsA) of type-three secretion
system (T3SS), and outer and inner membrane ring
of T3SS (ascV and ascC) were detected using PCR
with specific primers (Table 1). The PCR was
conducted as described in the preceding section.
The PCR conditions for aerA, act, ast, and alt were
similar with an annealing temperature of 58°C.
Similarly, amplification of the other six genes, viz.,
lip, hlyA, ela, exsA, ascV, and ascC, was carried out
under similar PCR conditions with an annealing
temperature of 55°C.

The in vivo pathogenicity of the isolates was
assessed by determining the fifty percent lethal
dosage (LD

50
) through probit analysis (Finney,

1952). For each A. hydrophila isolate, a separate
experiment was conducted at 30±2°C with Labeo
rohita fingerlings, weighing 14±5 g and measuring
12±2 cm in length, obtained from a local fish farm.
Ten fish were placed in each tank with a volume of
200 L and continuous aeration for two weeks before
being challenged. The fish were injected intraperi-
toneally with 100 ìL of bacterial suspension at six
different concentrations of A. hydrophila strain (104-
109 cells m L-1), while the control received 100 ìL
phosphate buffered saline in a completely random-
ized design with three replications. Mortality rates
and clinical symptoms of each group were docu-
mented daily for 14 days following infection. Fish
showing signs of morbidity were further subjected

to regular bacteriological analysis to enable the re-
isolation and re-identification of the microorganism.

Results and Discussion

The presumptive Aeromonas isolates recovered from
the water samples were gram-negative, motile, and
rod-shaped. The isolates tested positive for oxidase,
catalase, indole, Voges-Proskauer, and lysine decar-
boxylation, but negative for methyl red, ornithine
decarboxylase, citrate utilization, and urea hydroly-
sis. The isolates exhibited a fermentative metabo-
lism, producing acid from glucose, sucrose, and
arabinose, but not from sorbitol or inositol. These
biochemical findings indicated that these strains are
classified within the Aeromonas genus by the
guidelines provided in Bergey’s Manual of System-
atic Bacteriology (Martin-Carnahan & Joseph, 2005).
Similar biochemical properties of A. hydrophila
strains were also reported by Borty et al. (2016), &
Monir, Bagum, Kabir, Borty, and Ud Doulah (2017).

Fig. 2. PCR amplicon of 16s rRNA of Aeromonas hydrophila
[Lane 1: 100 bp DNA ladder; Lane 2 to 5: A.
hydrophila COFCAU_AH1, COFCAU_AH2,
COFCAU_AH3, COFCAU_AH4, respectively]
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In addition to biochemical characterization, the
isolates were subjected to PCR amplification of the
16S rRNA gene followed by sequencing for molecu-
lar identification (Fig. 2). The results of molecular
analyses confirmed the strains as A. hydrophila. The
16S rRNA gene sequences of the strains were
submitted to the National Centre for Biotechnology
Information (NCBI) database, obtaining GenBank
accession numbers MK907589 (842 bp), MK907590
(726 bp), MK907591 (790 bp), and MK907595 (886
bp), respectively with all sequences being 100%
identical to A. hydrophila. The phylogenetic tree
further confirmed the similarity of the strains to
other A. hydrophila isolates (Fig. 3).

The antibiotic susceptibility test results are summa-
rized in Fig. 4. All tested isolates were susceptible
to amoxyclav, cephalexin, gentamicin, oxacillin, and
tetracycline. However, COFCAU_AH1 exhibited
resistance to kanamycin and tobramycin, while
COFCAU_AH2 showed resistance to polymyxin B,
ticarcillin, and tobramycin. Additionally,
COFCAU_AH3, and COFCAU_AH4 were both
resistant to erythromycin. The observed antibiotic

resistance patterns in the four Aeromonas strains
isolated from Tripura fish ponds likely stem from
a combination of factors, including intrinsic resis-
tance mechanisms, acquired resistance genes, and
selective pressure from antibiotic use in aquaculture
(Muziasari et al., 2016; Stratev & Odeyemi, 2016).
The emergence of multiple antibiotic resistance in
A. hydrophila isolated from aquaculture systems
poses a significant challenge (Hatha, Vivekanandhan,
Joice, & Christol, 2005). Kumar and Rathore (2024)
further emphasized the prevalence and geographical
distribution of antimicrobial resistance (AMR) in
freshwater fish farms in India, highlighting the need
for spatial assessments and mitigation strategies to
combat AMR in aquaculture.

The results of the phenotypic determinants of
virulence and virulence gene detection are pre-
sented in Table 2. Determining the production of
exoenzymes and toxins by a bacterium is a direct
method to demonstrate its pathogenic potential
(Sreedharan, Philip, & Singh, 2012). Three strains of
A. hydrophila (COFCAU_AH1, COFCAU_AH3, and
COFCAU_AH4) produced hydrolytic enzymes,

Table 2. Phenotypic virulent determinants and distribution of major virulence genes in A. hydrophila isolates

Sl. No. Phenotypes activity             A. hydrophila COFCAU
AH1 AH2 AH3 AH4

1. Haemolytic activity - - + +

2. Lipase activity + + + +

3. Gelatinase activity + - + +

4. Amylase activity - - + +

5. DNase activity - - + +

6. Caseinase activity + - + +

Genes AH1 AH2 AH3 AH4

1. aerA - - + -

2. act - - - -

3. ast - - + +

4. alt - - + +

5. hlyA - - + +

6. Lip +
+ + +

7. Ela - - + +

8. exsA - - - -

9. ascV - - - -

10. ascC - - + +

Note. + : Positive; - : Negative
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notably gelatinase and caseinase. All four strains
produced lipase. The isolates COFCAU_AH3 and
COFCAU_AH4 exhibited high levels of amylase,
DNase, and hemolytic activity. The pathogenicity of
Aeromonas spp. is attributed to the involvement and
phenotypic expressions of various secreted enzymes
(Citterio & Biavasco, 2015). The phenotypic viru-
lence characteristics of A. hydrophila isolates have
been described by several authors as being positive
for generating amylase and decomposing starch, as
well as demonstrating positive reactivity to lipase,
gelatinase, caseinase, and DNase activities (Kerigano
et al., 2023), which is consistent with current
findings. In zebrafish, the phenotypic manifestation
of virulence in A. hydrophila have been attributed to
enzyme-mediated activities via DNase, gelatinase,
lipase, caseinase, and haemolysin (Chandrarathna et
al., 2018; Hossain, De Silva, Dahanayake, & Heo,
2018).

The virulence gene content of the studied strains of
A. hydrophila was directly correlated with the
pathogenicity of the strains, and the pathogenicity
was also associated with the number of genes
harboured by the isolates. Virulence genes such as
hylA (597 bp), ast (331 bp), ela (513 bp), ascC (476)
bp, and alt (476 bp) were detected in isolates
COFCAU_AH3 and COFCAU_AH4 which indi-
cates their pathogenic character. The lipase gene (lip
- 382 bp) was detected in all four isolates, which
aligns with past studies showing that A. hydrophila
commonly harbors haemolytic genes, which may be
used to assess virulence (Hamdan et al., 2015; Roges
et al., 2020). However, Park, Kim, Choi, and Rhee
(2021) reported that ast (heat-stable enterotoxin) and
alt (heat-labile enterotoxin) were the most frequently
detected genetic patterns across all isolates in their
study with A. hydrophila. Samayanpaulraj et al.
(2020) noted that elastase and lipase are essential for

Fig. 3. The phylogenetic tree based on partial 16s rRNA gene sequence of Aeromonas hydrophila strains (s). The tree
was constructed using Maximum Likelihood method with genetic distance calculated according to Kimura's 2-
parameter model of MEGA11 software.
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fish, 40% possess the aerolysin. None of the
examined A. hydrophila strains harbored the cyto-
toxic heat-stable enterotoxin (act), ascV, or exsA
genes. A previous study by Li et al. (2021) found a
higher frequency of virulent genes in isolates from
diseased animals compared to those from healthy
fish or water environments.

The first mortality occured 12h after the intraperi-
toneal injection. It was observed that the mortality
rate increased with increasing concentrations. Dif-
ferent concentrations of A. hydrophila (104-109 cells
mL-1) resulted in mortality rates of 10-97% for
COFCAU_AH1, 0% for COFCAU_AH2, 43-100% for
COFCAU_AH3, and 40-100% for COFCAU_AH4.
The days post-mortality pattern for fish challenged
with different strains and bacterial concentrations
are shown in Kaplan-Meier survival curves (Fig. 5).
Some of the external clinical signs that were
observed included dropsy, a reddish vent, scale
erosion, tail rot, erythema at the bases of the fins,
bilateral exophthalmia, haemorrhage in the abdo-
men area, and excessive mucus secretion (Fig. 6).
Pale liver and gills, a deposit of bloody fluid in the
abdominal cavity, hemorrhage in the kidney, muscle,
gastrointestinal tract, and air bladder were some
internal signs. The LD

50
 of A. hydrophila

Fig. 4. Antibiotic sensitivity testing of A. hydrophila
isolates by disc diffusion based on CLSI guide-
lines (CLSI, 2016)

Fig. 5. Kaplan-Meier survival curves for Aeromonas hydrophila strains (COFCAU_AH1, COFCAU_AH2, COFCAU_AH3,
COFCAU_AH4) across different doses in Labeo rohita fingerlings

virulent A. hydrophila to invade the intestinal
epithelium and contributed to disease development
in the host. The presence of the ascC virulence gene
in A. hydrophila strains was also observed by Vilches
et al. (2009) and Sha et al. (2005). Additionally, only
COFCAU_AH3 contained the aerolysin aer (498 bp)
gene. Saleh, Elkenany, and Younis (2021) revealed
that, out of 187 A. hydrophila isolates from diseased

Behera, Pradhan, Devi, Choudhury, Kamilya and Dekari 216



COFCAU_AH1, COFCAU_AH3, and
COFCAU_AH4 for L. rohita was estimated to be
109.5, 104.4, and 104.5 cells fish-1, respectively. No
mortality was observed for fish infected with
COFCAU_AH2.

The current results revealed that COFCAU_AH3
had highest virulence characteristics, followed by
COFCAU_AH4 and COFCAU_AH1 in experimen-
tal studies, which substantiate the in vitro virulence
characterization. Generally, isolates from diseased
fish show higher virulence than environmental
isolates, as observed in zebrafish by Li et al. (2021).
However, this study demonstrates that environmen-
tal isolates, which carry various virulence factors can
also cause significant damage to fish.

The pathogenic species A. hydrophila is ubiquitous
in aquatic environments and is associated with
diseases affecting both humans and various fish
species (Daskalov et al., 2006). While environmental
isolates of A. hydrophila are typically less virulent

Fig. 6. Hemorrhage in the abdominal region (A), hem-
orrhage around the eye (B), tail rot (C), erosion
of scales (D), and hemorrhage and hyperemia in
the air bladder of L. rohita challenged with A.
hydrophila

than the disease-causing isolates found in affected
fish, they still pose risks to aquaculture (Abdella,
Abozahra, Shokrak, Mohamed, & El-Helow, 2023).
Environmental isolates may not cause acute disease
in fish under normal circumstances, but virulent
isolates can become pathogenic under certain
circumstances. These isolates can compromise fish
health when they are stressed, or their immune
systems are compromised due to poor water quality,
overcrowding, or other environmental stressors.
Therefore, they can contribute to the overall disease
burden and negatively impact the overall health and
productivity of the aquaculture systems.

All the isolates exhibited varying levels of pheno-
typic expression of virulence factors. COFCAU_AH3
and COFCAU_AH4 carried multiple virulence
genes, and the LD

50
 dose also substantiates these.

Based on the results of the study of virulent
determinants and the pathogenicity test, it can be
concluded that the environmental isolates of A.
hydrophila carrying various virulent factors may
pose a significant threat to the aquaculture industry.
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